Nuprl Lemma : id_perm_wf
∀T:Type. (id_perm() ∈ Perm(T))
Proof
Definitions occuring in Statement : 
id_perm: id_perm()
, 
perm: Perm(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
id_perm: id_perm()
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
identity: Id
, 
tidentity: Id{T}
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
Lemmas referenced : 
mk_perm_wf_a, 
identity_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
universeEquality, 
functionExtensionality_alt, 
independent_pairFormation
Latex:
\mforall{}T:Type.  (id\_perm()  \mmember{}  Perm(T))
Date html generated:
2019_10_16-PM-00_58_47
Last ObjectModification:
2018_10_08-AM-09_46_33
Theory : perms_1
Home
Index