Nuprl Lemma : grp_op_wf
∀[g:GrpSig]. (* ∈ |g| ⟶ |g| ⟶ |g|)
Proof
Definitions occuring in Statement : 
grp_op: *
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
grp_sig: GrpSig
, 
grp_op: *
, 
grp_car: |g|
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid
Latex:
\mforall{}[g:GrpSig].  (*  \mmember{}  |g|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |g|)
Date html generated:
2016_05_15-PM-00_06_20
Last ObjectModification:
2015_12_26-PM-11_47_29
Theory : groups_1
Home
Index