Nuprl Lemma : grp_op_wf

[g:GrpSig]. (* ∈ |g| ⟶ |g| ⟶ |g|)


Proof




Definitions occuring in Statement :  grp_op: * grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T grp_sig: GrpSig grp_op: * grp_car: |g| pi1: fst(t) pi2: snd(t)
Lemmas referenced :  grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[g:GrpSig].  (*  \mmember{}  |g|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |g|)



Date html generated: 2016_05_15-PM-00_06_20
Last ObjectModification: 2015_12_26-PM-11_47_29

Theory : groups_1


Home Index