Nuprl Lemma : mon_for_of_op
∀g:IAbMonoid. ∀A:Type. ∀e,f:A ⟶ |g|. ∀as:A List.
  ((For{g} x ∈ as. (e[x] * f[x])) = ((For{g} x ∈ as. e[x]) * (For{g} x ∈ as. f[x])) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
mon_for_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
mon_for_cons_lemma, 
nat_wf, 
istype-universe, 
grp_car_wf, 
iabmonoid_wf, 
grp_id_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_ident, 
subtype_rel_self, 
iff_weakening_equal, 
grp_op_wf, 
infix_ap_wf, 
mon_for_wf, 
mon_assoc, 
abmonoid_ac_1, 
abmonoid_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
functionIsType, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}A:Type.  \mforall{}e,f:A  {}\mrightarrow{}  |g|.  \mforall{}as:A  List.
    ((For\{g\}  x  \mmember{}  as.  (e[x]  *  f[x]))  =  ((For\{g\}  x  \mmember{}  as.  e[x])  *  (For\{g\}  x  \mmember{}  as.  f[x])))
Date html generated:
2019_10_16-PM-01_02_44
Last ObjectModification:
2018_10_08-PM-00_29_16
Theory : list_2
Home
Index