Nuprl Lemma : mon_for_cons_lemma

f,as,a,g,T:Top.  (For{g} x ∈ [a as]. f[x] f[a] (For{g} x ∈ as. f[x]))


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] cons: [a b] top: Top infix_ap: y so_apply: x[s] all: x:A. B[x] sqequal: t grp_op: *
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mon_for: For{g} x ∈ as. f[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s] infix_ap: y
Lemmas referenced :  top_wf for_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}f,as,a,g,T:Top.    (For\{g\}  x  \mmember{}  [a  /  as].  f[x]  \msim{}  f[a]  *  (For\{g\}  x  \mmember{}  as.  f[x]))



Date html generated: 2016_05_16-AM-07_35_59
Last ObjectModification: 2015_12_28-PM-05_45_39

Theory : list_2


Home Index