Nuprl Lemma : for_cons_lemma
∀g,as,a,k,f,T:Top.  (For{T,f,k} x ∈ [a / as]. g[x] ~ f g[a] (For{T,f,k} x ∈ as. g[x]))
Proof
Definitions occuring in Statement : 
for: For{T,op,id} x ∈ as. f[x]
, 
cons: [a / b]
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
for: For{T,op,id} x ∈ as. f[x]
, 
top: Top
, 
tlambda: λx:T. b[x]
Lemmas referenced : 
top_wf, 
map_cons_lemma, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}g,as,a,k,f,T:Top.    (For\{T,f,k\}  x  \mmember{}  [a  /  as].  g[x]  \msim{}  f  g[a]  (For\{T,f,k\}  x  \mmember{}  as.  g[x]))
Date html generated:
2016_05_14-AM-07_38_21
Last ObjectModification:
2015_12_26-PM-02_12_36
Theory : list_1
Home
Index