Nuprl Lemma : reduce_cons_lemma

b,a,k,f:Top.  (reduce(f;k;[a b]) reduce(f;k;b))


Proof




Definitions occuring in Statement :  reduce: reduce(f;k;as) cons: [a b] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T reduce: reduce(f;k;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}b,a,k,f:Top.    (reduce(f;k;[a  /  b])  \msim{}  f  a  reduce(f;k;b))



Date html generated: 2016_05_14-AM-06_27_35
Last ObjectModification: 2015_12_26-PM-00_41_20

Theory : list_0


Home Index