Nuprl Lemma : int_term_value_subtract_lemma
∀y,x,f:Top.  (int_term_value(f;x "-" y) ~ int_term_value(f;x) - int_term_value(f;y))
Proof
Definitions occuring in Statement : 
int_term_value: int_term_value(f;t)
, 
itermSubtract: left "-" right
, 
top: Top
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_term_value: int_term_value(f;t)
, 
itermSubtract: left "-" right
, 
int_term_ind: int_term_ind
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}y,x,f:Top.    (int\_term\_value(f;x  "-"  y)  \msim{}  int\_term\_value(f;x)  -  int\_term\_value(f;y))
Date html generated:
2016_05_14-AM-06_59_31
Last ObjectModification:
2015_12_26-PM-01_12_54
Theory : omega
Home
Index