Nuprl Lemma : grp_id_wf
∀[g:GrpSig]. (e ∈ |g|)
Proof
Definitions occuring in Statement :
grp_id: e
,
grp_car: |g|
,
grp_sig: GrpSig
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
grp_sig: GrpSig
,
grp_id: e
,
grp_car: |g|
,
pi1: fst(t)
,
pi2: snd(t)
Lemmas referenced :
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lemma_by_obid
Latex:
\mforall{}[g:GrpSig]. (e \mmember{} |g|)
Date html generated:
2016_05_15-PM-00_06_23
Last ObjectModification:
2015_12_26-PM-11_47_31
Theory : groups_1
Home
Index