Nuprl Lemma : mon_ident

[g:IMonoid]. ∀[a:|g|].  (((a e) a ∈ |g|) ∧ ((e a) a ∈ |g|))


Proof




Definitions occuring in Statement :  imon: IMonoid grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  ident: Ident(T;op;id) uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q imon: IMonoid monoid_p: IsMonoid(T;op;id)
Lemmas referenced :  grp_car_wf imon_wf imon_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality productElimination independent_pairEquality axiomEquality hypothesis lemma_by_obid setElimination rename

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a:|g|].    (((a  *  e)  =  a)  \mwedge{}  ((e  *  a)  =  a))



Date html generated: 2016_05_15-PM-00_06_42
Last ObjectModification: 2015_12_26-PM-11_47_15

Theory : groups_1


Home Index