Nuprl Lemma : imon_properties

[g:IMonoid]. IsMonoid(|g|;*;e)


Proof




Definitions occuring in Statement :  imon: IMonoid grp_id: e grp_op: * grp_car: |g| monoid_p: IsMonoid(T;op;id) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid sq_stable: SqStable(P) implies:  Q squash: T monoid_p: IsMonoid(T;op;id) and: P ∧ Q assoc: Assoc(T;op) ident: Ident(T;op;id)
Lemmas referenced :  imon_wf grp_id_wf grp_op_wf grp_car_wf sq_stable__monoid_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[g:IMonoid].  IsMonoid(|g|;*;e)



Date html generated: 2016_05_15-PM-00_06_39
Last ObjectModification: 2016_01_15-PM-11_06_30

Theory : groups_1


Home Index