Nuprl Lemma : sq_stable__monoid_p

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T].  SqStable(IsMonoid(T;op;id))


Proof




Definitions occuring in Statement :  monoid_p: IsMonoid(T;op;id) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  monoid_p: IsMonoid(T;op;id) uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q assoc: Assoc(T;op) ident: Ident(T;op;id)
Lemmas referenced :  sq_stable__and assoc_wf ident_wf sq_stable__assoc sq_stable__ident squash_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].    SqStable(IsMonoid(T;op;id))



Date html generated: 2016_05_15-PM-00_06_07
Last ObjectModification: 2015_12_26-PM-11_47_38

Theory : groups_1


Home Index