Nuprl Lemma : sq_stable__ident
∀[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T].  SqStable(Ident(T;op;id))
Proof
Definitions occuring in Statement : 
ident: Ident(T;op;id), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
ident: Ident(T;op;id), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
infix_ap: x f y, 
so_apply: x[s], 
prop: ℙ
Lemmas referenced : 
squash_wf, 
uall_wf, 
and_wf, 
equal_wf, 
sq_stable__uall, 
sq_stable__and, 
sq_stable__equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
applyEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
independent_functionElimination, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].    SqStable(Ident(T;op;id))
Date html generated:
2016_05_15-PM-00_02_16
Last ObjectModification:
2015_12_26-PM-11_25_39
Theory : gen_algebra_1
Home
Index