Nuprl Lemma : sq_stable__uall

[A:Type]. ∀[P:A ⟶ ℙ].  ((∀[x:A]. SqStable(P[x]))  SqStable(∀[x:A]. P[x]))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sq_stable: SqStable(P) uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T
Lemmas referenced :  squash_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation Error :universeIsType,  hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis functionEquality Error :functionIsType,  universeEquality independent_functionElimination imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}[x:A].  SqStable(P[x]))  {}\mRightarrow{}  SqStable(\mforall{}[x:A].  P[x]))



Date html generated: 2019_06_20-AM-11_15_26
Last ObjectModification: 2018_09_26-AM-09_59_34

Theory : core_2


Home Index