Nuprl Lemma : ident_wf
∀[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. (Ident(T;op;id) ∈ ℙ)
Proof
Definitions occuring in Statement :
ident: Ident(T;op;id)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
ident: Ident(T;op;id)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
infix_ap: x f y
,
so_apply: x[s]
Lemmas referenced :
uall_wf,
and_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[op:T {}\mrightarrow{} T {}\mrightarrow{} T]. \mforall{}[id:T]. (Ident(T;op;id) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_02_14
Last ObjectModification:
2015_12_26-PM-11_25_29
Theory : gen_algebra_1
Home
Index