Nuprl Lemma : abmonoid_comm

[g:IAbMonoid]. ∀[a,b:|g|].  ((a b) (b a) ∈ |g|)


Proof




Definitions occuring in Statement :  iabmonoid: IAbMonoid grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  comm: Comm(T;op) uall: [x:A]. B[x] member: t ∈ T iabmonoid: IAbMonoid imon: IMonoid
Lemmas referenced :  grp_car_wf iabmonoid_wf iabmonoid_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis lemma_by_obid setElimination rename

Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[a,b:|g|].    ((a  *  b)  =  (b  *  a))



Date html generated: 2016_05_15-PM-00_07_17
Last ObjectModification: 2015_12_26-PM-11_46_45

Theory : groups_1


Home Index