Nuprl Lemma : abmonoid_comm
∀[g:IAbMonoid]. ∀[a,b:|g|].  ((a * b) = (b * a) ∈ |g|)
Proof
Definitions occuring in Statement : 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
comm: Comm(T;op)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
Lemmas referenced : 
grp_car_wf, 
iabmonoid_wf, 
iabmonoid_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
setElimination, 
rename
Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[a,b:|g|].    ((a  *  b)  =  (b  *  a))
Date html generated:
2016_05_15-PM-00_07_17
Last ObjectModification:
2015_12_26-PM-11_46_45
Theory : groups_1
Home
Index