Nuprl Lemma : mset_for_wf

s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀a:MSet{s}.  (msFor{g} x ∈ a. f[x] ∈ |g|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet iabmonoid: IAbMonoid imon: IMonoid mset_for: mset_for mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q prop: squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mset_wf set_car_wf grp_car_wf iabmonoid_wf dset_wf list_wf permr_wf equal_wf equal-wf-base squash_wf true_wf mon_for_functionality_wrt_permr mem_f_wf mon_for_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid dependent_functionElimination thin hypothesisEquality functionEquality isectElimination setElimination rename pointwiseFunctionalityForEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache independent_functionElimination productEquality applyEquality lambdaEquality imageElimination universeEquality functionExtensionality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}a:MSet\{s\}.    (msFor\{g\}  x  \mmember{}  a.  f[x]  \mmember{}  |g|)



Date html generated: 2017_10_01-AM-09_59_14
Last ObjectModification: 2017_03_03-PM-01_00_06

Theory : mset


Home Index