Nuprl Lemma : mon_for_functionality_wrt_permr

g:IAbMonoid. ∀A:Type. ∀as,as':A List. ∀f,f':A ⟶ |g|.
  ((as ≡(A) as')
   (∀x:A. (mem_f(A;x;as)  (f[x] f'[x] ∈ |g|)))
   ((For{g} x ∈ as. f[x]) (For{g} x ∈ as'. f'[x]) ∈ |g|))


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] mem_f: mem_f(T;a;bs) permr: as ≡(T) bs list: List so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] mon_reduce: mon_reduce member: t ∈ T prop: uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s] tlambda: λx:T. b[x] true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  mem_f_wf grp_car_wf permr_wf list_wf istype-universe iabmonoid_wf mon_reduce_wf map_wf equal_wf squash_wf true_wf mon_reduce_functionality_wrt_permr map_functionality permr_inversion subtype_rel_self iff_weakening_equal imon_wf map_functionality_2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis sqequalRule functionIsType universeIsType hypothesisEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin equalityIstype isectElimination setElimination rename applyEquality inhabitedIsType instantiate universeEquality because_Cache lambdaEquality_alt natural_numberEquality imageElimination equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed independent_isectElimination productElimination setIsType

Latex:
\mforall{}g:IAbMonoid.  \mforall{}A:Type.  \mforall{}as,as':A  List.  \mforall{}f,f':A  {}\mrightarrow{}  |g|.
    ((as  \mequiv{}(A)  as')
    {}\mRightarrow{}  (\mforall{}x:A.  (mem\_f(A;x;as)  {}\mRightarrow{}  (f[x]  =  f'[x])))
    {}\mRightarrow{}  ((For\{g\}  x  \mmember{}  as.  f[x])  =  (For\{g\}  x  \mmember{}  as'.  f'[x])))



Date html generated: 2020_05_20-AM-09_35_34
Last ObjectModification: 2020_01_08-PM-06_00_19

Theory : list_2


Home Index