Nuprl Lemma : mon_for_functionality_wrt_permr
∀g:IAbMonoid. ∀A:Type. ∀as,as':A List. ∀f,f':A ⟶ |g|.
  ((as ≡(A) as')
  ⇒ (∀x:A. (mem_f(A;x;as) ⇒ (f[x] = f'[x] ∈ |g|)))
  ⇒ ((For{g} x ∈ as. f[x]) = (For{g} x ∈ as'. f'[x]) ∈ |g|))
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x], 
mem_f: mem_f(T;a;bs), 
permr: as ≡(T) bs, 
list: T List, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
iabmonoid: IAbMonoid, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
mon_for: For{g} x ∈ as. f[x], 
for: For{T,op,id} x ∈ as. f[x], 
mon_reduce: mon_reduce, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
so_apply: x[s], 
tlambda: λx:T. b[x], 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
mem_f_wf, 
grp_car_wf, 
permr_wf, 
list_wf, 
istype-universe, 
iabmonoid_wf, 
mon_reduce_wf, 
map_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_reduce_functionality_wrt_permr, 
map_functionality, 
permr_inversion, 
subtype_rel_self, 
iff_weakening_equal, 
imon_wf, 
map_functionality_2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalRule, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
equalityIstype, 
isectElimination, 
setElimination, 
rename, 
applyEquality, 
inhabitedIsType, 
instantiate, 
universeEquality, 
because_Cache, 
lambdaEquality_alt, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
setIsType
Latex:
\mforall{}g:IAbMonoid.  \mforall{}A:Type.  \mforall{}as,as':A  List.  \mforall{}f,f':A  {}\mrightarrow{}  |g|.
    ((as  \mequiv{}(A)  as')
    {}\mRightarrow{}  (\mforall{}x:A.  (mem\_f(A;x;as)  {}\mRightarrow{}  (f[x]  =  f'[x])))
    {}\mRightarrow{}  ((For\{g\}  x  \mmember{}  as.  f[x])  =  (For\{g\}  x  \mmember{}  as'.  f'[x])))
Date html generated:
2020_05_20-AM-09_35_34
Last ObjectModification:
2020_01_08-PM-06_00_19
Theory : list_2
Home
Index