Nuprl Lemma : mon_reduce_functionality_wrt_permr
∀g:IAbMonoid. ∀xs,ys:|g| List.  ((xs ≡(|g|) ys) 
⇒ ((Π xs) = (Π ys) ∈ |g|))
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
permr: as ≡(T) bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
prop: ℙ
, 
permr: as ≡(T) bs
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
so_apply: x[s]
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
less_than: a < b
Lemmas referenced : 
permr_wf, 
grp_car_wf, 
list_wf, 
iabmonoid_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mon_reduce_eq_itop, 
subtype_rel_self, 
iff_weakening_equal, 
mon_itop_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
length_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
less_than_wf, 
imon_wf, 
length_wf_nat, 
perm_f_wf, 
non_neg_length, 
nat_properties, 
mon_itop_perm_invar
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
inhabitedIsType, 
productElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
functionIsType, 
applyLambdaEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}xs,ys:|g|  List.    ((xs  \mequiv{}(|g|)  ys)  {}\mRightarrow{}  ((\mPi{}  xs)  =  (\mPi{}  ys)))
Date html generated:
2019_10_16-PM-01_02_26
Last ObjectModification:
2018_10_08-AM-11_42_17
Theory : list_2
Home
Index