Nuprl Lemma : mon_reduce_functionality_wrt_permr

g:IAbMonoid. ∀xs,ys:|g| List.  ((xs ≡(|g|) ys)  ((Π xs) (Π ys) ∈ |g|))


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid prop: permr: as ≡(T) bs cand: c∧ B exists: x:A. B[x] true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top so_apply: x[s] sym_grp: Sym(n) perm: Perm(T) ge: i ≥  nat: less_than: a < b
Lemmas referenced :  permr_wf grp_car_wf list_wf iabmonoid_wf equal_wf squash_wf true_wf istype-universe mon_reduce_eq_itop subtype_rel_self iff_weakening_equal mon_itop_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf length_wf intformeq_wf int_formula_prop_eq_lemma le_wf less_than_wf imon_wf length_wf_nat perm_f_wf non_neg_length nat_properties mon_itop_perm_invar
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename because_Cache hypothesisEquality inhabitedIsType productElimination natural_numberEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberEquality_alt productIsType functionIsType applyLambdaEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}xs,ys:|g|  List.    ((xs  \mequiv{}(|g|)  ys)  {}\mRightarrow{}  ((\mPi{}  xs)  =  (\mPi{}  ys)))



Date html generated: 2019_10_16-PM-01_02_26
Last ObjectModification: 2018_10_08-AM-11_42_17

Theory : list_2


Home Index