Nuprl Lemma : mon_itop_perm_invar

g:IAbMonoid. ∀n:ℕ. ∀E:ℕn ⟶ |g|. ∀p:Sym(n).  ((Π 0 ≤ j < n. E[p.f j]) (Π 0 ≤ j < n. E[j]) ∈ |g|)


Proof




Definitions occuring in Statement :  sym_grp: Sym(n) perm_f: p.f int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T mon_itop: Π lb ≤ i < ub. E[i] iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s] so_lambda: λ2x.t[x] sym_grp: Sym(n) perm: Perm(T) implies:  Q guard: {T} id_perm: id_perm() mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) identity: Id comp_perm: comp_perm txpose_perm: txpose_perm compose: g
Lemmas referenced :  int_seg_wf grp_car_wf nat_wf iabmonoid_wf perm_induction_b equal_wf mon_itop_wf perm_f_wf perm_wf mon_itop_txpose_invar
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis sqequalRule dependent_functionElimination lambdaEquality_alt because_Cache applyEquality independent_functionElimination equalityIsType1 equalityTransitivity

Latex:
\mforall{}g:IAbMonoid.  \mforall{}n:\mBbbN{}.  \mforall{}E:\mBbbN{}n  {}\mrightarrow{}  |g|.  \mforall{}p:Sym(n).    ((\mPi{}  0  \mleq{}  j  <  n.  E[p.f  j])  =  (\mPi{}  0  \mleq{}  j  <  n.  E[j]))



Date html generated: 2019_10_16-PM-01_02_10
Last ObjectModification: 2018_10_08-AM-11_50_40

Theory : list_2


Home Index