Nuprl Lemma : perm_induction_b

n:ℕ. ∀Q:Sym(n) ⟶ ℙ.  (Q[id_perm()]  (∀p:Sym(n). (Q[p]  (∀i:ℕ+n. Q[p txpose_perm(i;0)])))  {∀p:Sym(n). Q[p]})


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) comp_perm: comp_perm id_perm: id_perm() int_seg: {i..j-} nat: prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] nat: subtype_rel: A ⊆B prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q squash: T true: True
Lemmas referenced :  perm_wf int_seg_wf subtype_rel_self comp_perm_wf txpose_perm_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than_wf istype-false int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma id_perm_wf nat_wf perm_induction_a inv_perm_wf perm_grp_inv_id iff_weakening_equal perm_grp_inv_thru_op squash_wf true_wf txpose_perm_inv perm_grp_inv_inv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality instantiate universeEquality because_Cache dependent_set_memberEquality_alt productElimination independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType equalityTransitivity equalitySymmetry imageElimination inhabitedIsType imageMemberEquality baseClosed

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}Q:Sym(n)  {}\mrightarrow{}  \mBbbP{}.
    (Q[id\_perm()]  {}\mRightarrow{}  (\mforall{}p:Sym(n).  (Q[p]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}n.  Q[p  O  txpose\_perm(i;0)])))  {}\mRightarrow{}  \{\mforall{}p:Sym(n).  Q[p]\})



Date html generated: 2019_10_16-PM-01_02_08
Last ObjectModification: 2018_10_08-PM-05_44_42

Theory : list_2


Home Index