Nuprl Lemma : perm_induction_b
∀n:ℕ. ∀Q:Sym(n) ⟶ ℙ.  (Q[id_perm()] 
⇒ (∀p:Sym(n). (Q[p] 
⇒ (∀i:ℕ+n. Q[p O txpose_perm(i;0)]))) 
⇒ {∀p:Sym(n). Q[p]})
Proof
Definitions occuring in Statement : 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
comp_perm: comp_perm, 
id_perm: id_perm()
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
sym_grp: Sym(n)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
perm_wf, 
int_seg_wf, 
subtype_rel_self, 
comp_perm_wf, 
txpose_perm_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
istype-false, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
id_perm_wf, 
nat_wf, 
perm_induction_a, 
inv_perm_wf, 
perm_grp_inv_id, 
iff_weakening_equal, 
perm_grp_inv_thru_op, 
squash_wf, 
true_wf, 
txpose_perm_inv, 
perm_grp_inv_inv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
universeEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}Q:Sym(n)  {}\mrightarrow{}  \mBbbP{}.
    (Q[id\_perm()]  {}\mRightarrow{}  (\mforall{}p:Sym(n).  (Q[p]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}n.  Q[p  O  txpose\_perm(i;0)])))  {}\mRightarrow{}  \{\mforall{}p:Sym(n).  Q[p]\})
Date html generated:
2019_10_16-PM-01_02_08
Last ObjectModification:
2018_10_08-PM-05_44_42
Theory : list_2
Home
Index