Nuprl Lemma : perm_induction_a

n:ℕ. ∀Q:Sym(n) ⟶ ℙ.
  (Q[id_perm()]  (∀p:Sym(n). (Q[p]  (∀i:{1..n-}. Q[txpose_perm(i;0) p])))  {∀p:Sym(n). Q[p]})


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) comp_perm: comp_perm id_perm: id_perm() int_seg: {i..j-} nat: prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] sym_grp: Sym(n) uall: [x:A]. B[x] nat: prop: subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  perm_mon_assoc triple_txpose_perm int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq txpose_perm_sym perm_mon_ident iff_weakening_equal txpose_perm_id true_wf squash_wf decidable__equal_int nat_wf id_perm_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_seg_properties false_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties txpose_perm_wf comp_perm_wf all_wf int_seg_wf perm_wf perm_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality isectElimination natural_numberEquality setElimination rename hypothesis independent_functionElimination functionEquality universeEquality because_Cache dependent_set_memberEquality productElimination independent_pairFormation unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll cumulativity equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed instantiate

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}Q:Sym(n)  {}\mrightarrow{}  \mBbbP{}.
    (Q[id\_perm()]
    {}\mRightarrow{}  (\mforall{}p:Sym(n).  (Q[p]  {}\mRightarrow{}  (\mforall{}i:\{1..n\msupminus{}\}.  Q[txpose\_perm(i;0)  O  p])))
    {}\mRightarrow{}  \{\mforall{}p:Sym(n).  Q[p]\})



Date html generated: 2016_05_16-AM-07_35_35
Last ObjectModification: 2016_01_16-PM-11_13_35

Theory : list_2


Home Index