Nuprl Lemma : perm_mon_ident

[T:Type]. ∀[a:Perm(T)].  ((a id_perm() a ∈ Perm(T)) ∧ (id_perm() a ∈ Perm(T)))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm id_perm: id_perm() perm: Perm(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B igrp: IGroup perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e infix_ap: y and: P ∧ Q all: x:A. B[x]
Lemmas referenced :  mon_ident perm_igrp_wf igrp_wf perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule isect_memberEquality productElimination independent_pairEquality axiomEquality dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:Perm(T)].    ((a  O  id\_perm()  =  a)  \mwedge{}  (id\_perm()  O  a  =  a))



Date html generated: 2016_05_16-AM-07_29_22
Last ObjectModification: 2015_12_28-PM-05_36_22

Theory : perms_1


Home Index