Nuprl Lemma : perm_igrp_wf
∀[T:Type]. (perm_igrp(T) ∈ IGroup)
Proof
Definitions occuring in Statement : 
perm_igrp: perm_igrp(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
igrp: IGroup
Definitions unfolded in proof : 
perm_igrp: perm_igrp(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
assoc: Assoc(T;op)
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
ident: Ident(T;op;id)
, 
cand: A c∧ B
, 
inverse: Inverse(T;op;id;inv)
Lemmas referenced : 
mk_igrp_wf, 
perm_wf, 
comp_perm_wf, 
id_perm_wf, 
inv_perm_wf, 
iff_weakening_equal, 
perm_assoc, 
true_wf, 
squash_wf, 
equal_wf, 
perm_ident, 
perm_inverse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
extract_by_obid, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
cumulativity, 
imageElimination, 
applyEquality, 
isect_memberFormation, 
lambdaFormation, 
independent_pairEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  (perm\_igrp(T)  \mmember{}  IGroup)
Date html generated:
2019_10_16-PM-00_59_06
Last ObjectModification:
2018_09_26-PM-08_09_08
Theory : perms_1
Home
Index