Nuprl Lemma : perm_igrp_wf

[T:Type]. (perm_igrp(T) ∈ IGroup)


Proof




Definitions occuring in Statement :  perm_igrp: perm_igrp(T) uall: [x:A]. B[x] member: t ∈ T universe: Type igrp: IGroup
Definitions unfolded in proof :  perm_igrp: perm_igrp(T) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a infix_ap: y assoc: Assoc(T;op) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T ident: Ident(T;op;id) cand: c∧ B inverse: Inverse(T;op;id;inv)
Lemmas referenced :  mk_igrp_wf perm_wf comp_perm_wf id_perm_wf inv_perm_wf iff_weakening_equal perm_assoc true_wf squash_wf equal_wf perm_ident perm_inverse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality extract_by_obid isectElimination thin dependent_functionElimination hypothesisEquality lambdaEquality independent_isectElimination isect_memberEquality independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality because_Cache cumulativity imageElimination applyEquality isect_memberFormation lambdaFormation independent_pairEquality independent_pairFormation

Latex:
\mforall{}[T:Type].  (perm\_igrp(T)  \mmember{}  IGroup)



Date html generated: 2019_10_16-PM-00_59_06
Last ObjectModification: 2018_09_26-PM-08_09_08

Theory : perms_1


Home Index