Nuprl Lemma : perm_ident

[T:Type]. ∀[p:Perm(T)].  ((p id_perm() p ∈ Perm(T)) ∧ (id_perm() p ∈ Perm(T)))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm id_perm: id_perm() perm: Perm(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q all: x:A. B[x] perm: Perm(T) prop: pi2: snd(t) perm_b: p.b pi1: fst(t) perm_f: p.f mk_perm: mk_perm(f;b) id_perm: id_perm() comp_perm: comp_perm true: True squash: T tidentity: Id{T} subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  perm_wf comp_perm_wf id_perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf perm_sig_wf compose_wf identity_wf equal_wf squash_wf true_wf mk_perm_wf comp_id_l subtype_rel_self comp_id_r iff_weakening_equal mk_perm_eta_rw
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality universeIsType extract_by_obid dependent_functionElimination hypothesisEquality isect_memberEquality isectElimination because_Cache universeEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality setElimination rename natural_numberEquality applyEquality lambdaEquality imageElimination functionEquality imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[p:Perm(T)].    ((p  O  id\_perm()  =  p)  \mwedge{}  (id\_perm()  O  p  =  p))



Date html generated: 2019_10_16-PM-00_58_59
Last ObjectModification: 2018_09_26-PM-08_11_08

Theory : perms_1


Home Index