Nuprl Lemma : perm_ident
∀[T:Type]. ∀[p:Perm(T)].  ((p O id_perm() = p ∈ Perm(T)) ∧ (id_perm() O p = p ∈ Perm(T)))
Proof
Definitions occuring in Statement : 
comp_perm: comp_perm, 
id_perm: id_perm(), 
perm: Perm(T), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
perm: Perm(T), 
prop: ℙ, 
pi2: snd(t), 
perm_b: p.b, 
pi1: fst(t), 
perm_f: p.f, 
mk_perm: mk_perm(f;b), 
id_perm: id_perm(), 
comp_perm: comp_perm, 
true: True, 
squash: ↓T, 
tidentity: Id{T}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
perm_wf, 
comp_perm_wf, 
id_perm_wf, 
perm_properties, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
perm_sig_wf, 
compose_wf, 
identity_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mk_perm_wf, 
comp_id_l, 
subtype_rel_self, 
comp_id_r, 
iff_weakening_equal, 
mk_perm_eta_rw
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
universeIsType, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[p:Perm(T)].    ((p  O  id\_perm()  =  p)  \mwedge{}  (id\_perm()  O  p  =  p))
Date html generated:
2019_10_16-PM-00_58_59
Last ObjectModification:
2018_09_26-PM-08_11_08
Theory : perms_1
Home
Index