Nuprl Lemma : mk_perm_eta_rw

T:Type. ∀p:Perm(T).  (mk_perm(p.f;p.b) p ∈ Perm(T))


Proof




Definitions occuring in Statement :  mk_perm: mk_perm(f;b) perm: Perm(T) perm_b: p.b perm_f: p.f all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T perm: Perm(T) perm_f: p.f pi1: fst(t) mk_perm: mk_perm(f;b) perm_b: p.b pi2: snd(t) uall: [x:A]. B[x] prop: perm_sig: perm_sig(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf pair_eta_rw istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality universeEquality dependent_set_memberEquality_alt sqequalRule isectElimination functionEquality lambdaEquality_alt because_Cache functionIsType inhabitedIsType setElimination rename

Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).    (mk\_perm(p.f;p.b)  =  p)



Date html generated: 2019_10_16-PM-00_58_46
Last ObjectModification: 2018_10_08-AM-09_46_35

Theory : perms_1


Home Index