Nuprl Lemma : mk_perm_eta_rw
∀T:Type. ∀p:Perm(T).  (mk_perm(p.f;p.b) = p ∈ Perm(T))
Proof
Definitions occuring in Statement : 
mk_perm: mk_perm(f;b), 
perm: Perm(T), 
perm_b: p.b, 
perm_f: p.f, 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
perm: Perm(T), 
perm_f: p.f, 
pi1: fst(t), 
mk_perm: mk_perm(f;b), 
perm_b: p.b, 
pi2: snd(t), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
perm_sig: perm_sig(T), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
perm_wf, 
perm_properties, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
pair_eta_rw, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
universeEquality, 
dependent_set_memberEquality_alt, 
sqequalRule, 
isectElimination, 
functionEquality, 
lambdaEquality_alt, 
because_Cache, 
functionIsType, 
inhabitedIsType, 
setElimination, 
rename
Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).    (mk\_perm(p.f;p.b)  =  p)
Date html generated:
2019_10_16-PM-00_58_46
Last ObjectModification:
2018_10_08-AM-09_46_35
Theory : perms_1
Home
Index