Nuprl Lemma : pair_eta_rw

[A:Type]. ∀[B:A ⟶ Type]. ∀[p:a:A × B[a]].  (<fst(p), snd(p)> p ∈ (a:A × B[a]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] pi1: fst(t) pi2: snd(t)
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :productIsType,  Error :universeIsType,  hypothesisEquality applyEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality productEquality Error :functionIsType,  Error :inhabitedIsType,  because_Cache functionEquality cumulativity universeEquality productElimination dependent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[p:a:A  \mtimes{}  B[a]].    (<fst(p),  snd(p)>  =  p)



Date html generated: 2019_06_20-AM-11_14_42
Last ObjectModification: 2018_09_26-AM-10_42_03

Theory : core_2


Home Index