Nuprl Lemma : pair_eta_rw
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[p:a:A × B[a]].  (<fst(p), snd(p)> = p ∈ (a:A × B[a]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :productIsType, 
Error :universeIsType, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
productEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[p:a:A  \mtimes{}  B[a]].    (<fst(p),  snd(p)>  =  p)
Date html generated:
2019_06_20-AM-11_14_42
Last ObjectModification:
2018_09_26-AM-10_42_03
Theory : core_2
Home
Index