Nuprl Lemma : perm_assoc

[T:Type]. ∀[p,q,r:Perm(T)].  (p r ∈ Perm(T))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm perm: Perm(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] perm: Perm(T) prop: pi2: snd(t) perm_b: p.b pi1: fst(t) perm_f: p.f mk_perm: mk_perm(f;b) comp_perm: comp_perm true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  perm_wf comp_perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf perm_sig_wf compose_wf mk_perm_wf equal_wf squash_wf true_wf comp_assoc subtype_rel_self iff_weakening_equal
Rules used in proof :  inhabitedIsType sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis because_Cache universeIsType universeEquality isect_memberFormation_alt sqequalRule isect_memberEquality isectElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality setElimination rename natural_numberEquality applyEquality lambdaEquality imageElimination functionEquality imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[p,q,r:Perm(T)].    (p  O  q  O  r  =  p  O  q  O  r)



Date html generated: 2019_10_16-PM-00_58_56
Last ObjectModification: 2018_09_26-PM-08_11_06

Theory : perms_1


Home Index