Nuprl Lemma : perm_assoc
∀[T:Type]. ∀[p,q,r:Perm(T)].  (p O q O r = p O q O r ∈ Perm(T))
Proof
Definitions occuring in Statement : 
comp_perm: comp_perm, 
perm: Perm(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
perm: Perm(T)
, 
prop: ℙ
, 
pi2: snd(t)
, 
perm_b: p.b
, 
pi1: fst(t)
, 
perm_f: p.f
, 
mk_perm: mk_perm(f;b)
, 
comp_perm: comp_perm, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
perm_wf, 
comp_perm_wf, 
perm_properties, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
perm_sig_wf, 
compose_wf, 
mk_perm_wf, 
equal_wf, 
squash_wf, 
true_wf, 
comp_assoc, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
inhabitedIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
because_Cache, 
universeIsType, 
universeEquality, 
isect_memberFormation_alt, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[p,q,r:Perm(T)].    (p  O  q  O  r  =  p  O  q  O  r)
Date html generated:
2019_10_16-PM-00_58_56
Last ObjectModification:
2018_09_26-PM-08_11_06
Theory : perms_1
Home
Index