Nuprl Lemma : perm_inverse

[T:Type]. ∀[p:Perm(T)].  ((p inv_perm(p) id_perm() ∈ Perm(T)) ∧ (inv_perm(p) id_perm() ∈ Perm(T)))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm inv_perm: inv_perm(p) id_perm: id_perm() perm: Perm(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q all: x:A. B[x] perm: Perm(T) prop: pi2: snd(t) perm_b: p.b pi1: fst(t) perm_f: p.f mk_perm: mk_perm(f;b) comp_perm: comp_perm inv_perm: inv_perm(p) id_perm: id_perm() inv_funs: InvFuns(A;B;f;g) true: True tidentity: Id{T} squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  perm_wf comp_perm_wf inv_perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf perm_sig_wf mk_perm_wf identity_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality universeIsType extract_by_obid dependent_functionElimination hypothesisEquality isect_memberEquality isectElimination because_Cache universeEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality natural_numberEquality applyEquality lambdaEquality imageElimination functionEquality imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[p:Perm(T)].    ((p  O  inv\_perm(p)  =  id\_perm())  \mwedge{}  (inv\_perm(p)  O  p  =  id\_perm()))



Date html generated: 2019_10_16-PM-00_59_03
Last ObjectModification: 2018_09_26-PM-08_09_11

Theory : perms_1


Home Index