Nuprl Lemma : mk_igrp_wf

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].
  (mk_igrp(T;op;id;inv) ∈ IGroup) supposing (Inverse(T;op;id;inv) and Ident(T;op;id) and Assoc(T;op))


Proof




Definitions occuring in Statement :  mk_igrp: mk_igrp(T;op;id;inv) igrp: IGroup ident: Ident(T;op;id) inverse: Inverse(T;op;id;inv) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mk_igrp: mk_igrp(T;op;id;inv) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: igrp: IGroup grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e grp_inv: ~ imon: IMonoid
Lemmas referenced :  inverse_wf ident_wf assoc_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf mk_imon btrue_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache functionEquality universeEquality dependent_set_memberEquality setElimination rename lambdaEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].
    (mk\_igrp(T;op;id;inv)  \mmember{}  IGroup)  supposing 
          (Inverse(T;op;id;inv)  and 
          Ident(T;op;id)  and 
          Assoc(T;op))



Date html generated: 2016_05_15-PM-00_08_00
Last ObjectModification: 2015_12_26-PM-11_46_14

Theory : groups_1


Home Index