Nuprl Lemma : inverse_wf

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].  (Inverse(T;op;id;inv) ∈ ℙ)


Proof




Definitions occuring in Statement :  inverse: Inverse(T;op;id;inv) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  inverse: Inverse(T;op;id;inv) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  uall_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].    (Inverse(T;op;id;inv)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_08_58
Last ObjectModification: 2015_12_26-AM-11_03_11

Theory : fun_1


Home Index