Nuprl Lemma : triple_txpose_perm

n:ℕ. ∀i,j,k:ℕn.
  ((¬(i j ∈ ℤ))
   (j k ∈ ℤ))
   (txpose_perm(i;j) txpose_perm(i;k) txpose_perm(j;k) txpose_perm(i;k) ∈ Sym(n)))


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) comp_perm: comp_perm int_seg: {i..j-} nat: all: x:A. B[x] not: ¬A implies:  Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a prop: txpose_perm: txpose_perm comp_perm: comp_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) sym_grp: Sym(n) perm: Perm(T) squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  not_wf equal-wf-base set_subtype_base lelt_wf istype-int int_subtype_base int_seg_wf nat_wf txpose_perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf mk_perm_wf squash_wf true_wf istype-universe triple_swap equal_wf swap_wf comp_assoc subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality lambdaEquality_alt natural_numberEquality setElimination rename independent_isectElimination inhabitedIsType dependent_functionElimination applyLambdaEquality dependent_set_memberEquality_alt because_Cache imageElimination equalityTransitivity equalitySymmetry functionIsType universeEquality imageMemberEquality independent_functionElimination functionEquality instantiate productElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j,k:\mBbbN{}n.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  (\mneg{}(j  =  k))
    {}\mRightarrow{}  (txpose\_perm(i;j)  =  txpose\_perm(i;k)  O  txpose\_perm(j;k)  O  txpose\_perm(i;k)))



Date html generated: 2019_10_16-PM-00_59_35
Last ObjectModification: 2018_10_08-AM-09_20_33

Theory : perms_1


Home Index