Nuprl Lemma : triple_txpose_perm
∀n:ℕ. ∀i,j,k:ℕn.
  ((¬(i = j ∈ ℤ))
  
⇒ (¬(j = k ∈ ℤ))
  
⇒ (txpose_perm(i;j) = txpose_perm(i;k) O txpose_perm(j;k) O txpose_perm(i;k) ∈ Sym(n)))
Proof
Definitions occuring in Statement : 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
comp_perm: comp_perm, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
txpose_perm: txpose_perm, 
comp_perm: comp_perm, 
mk_perm: mk_perm(f;b)
, 
perm_f: p.f
, 
pi1: fst(t)
, 
perm_b: p.b
, 
pi2: snd(t)
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
equal-wf-base, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
int_seg_wf, 
nat_wf, 
txpose_perm_wf, 
perm_properties, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
mk_perm_wf, 
squash_wf, 
true_wf, 
istype-universe, 
triple_swap, 
equal_wf, 
swap_wf, 
comp_assoc, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
inhabitedIsType, 
dependent_functionElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeEquality, 
imageMemberEquality, 
independent_functionElimination, 
functionEquality, 
instantiate, 
productElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j,k:\mBbbN{}n.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  (\mneg{}(j  =  k))
    {}\mRightarrow{}  (txpose\_perm(i;j)  =  txpose\_perm(i;k)  O  txpose\_perm(j;k)  O  txpose\_perm(i;k)))
Date html generated:
2019_10_16-PM-00_59_35
Last ObjectModification:
2018_10_08-AM-09_20_33
Theory : perms_1
Home
Index