Nuprl Lemma : triple_swap

n:ℕ. ∀i,j,k:ℕn.  ((¬(i j ∈ ℤ))  (j k ∈ ℤ))  (swap(i;j) (swap(i;k) (swap(j;k) swap(i;k))) ∈ (ℕn ⟶ ℕn)))


Proof




Definitions occuring in Statement :  swap: swap(i;j) compose: g int_seg: {i..j-} nat: all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] int_seg: {i..j-} nat: swap: swap(i;j) compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  not_wf equal_wf int_seg_wf nat_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf lelt_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality setElimination rename hypothesisEquality natural_numberEquality sqequalRule lambdaEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality promote_hyp instantiate independent_functionElimination cumulativity

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j,k:\mBbbN{}n.    ((\mneg{}(i  =  j))  {}\mRightarrow{}  (\mneg{}(j  =  k))  {}\mRightarrow{}  (swap(i;j)  =  (swap(i;k)  o  (swap(j;k)  o  swap(i;k)))))



Date html generated: 2017_10_01-AM-09_52_37
Last ObjectModification: 2017_03_03-PM-00_49_30

Theory : perms_1


Home Index