Nuprl Lemma : txpose_perm_wf

n:ℕ. ∀i,j:ℕn.  (txpose_perm(i;j) ∈ Sym(n))


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  txpose_perm: txpose_perm sym_grp: Sym(n) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q tidentity: Id{T} inv_funs: InvFuns(A;B;f;g) and: P ∧ Q
Lemmas referenced :  mk_perm_wf_a int_seg_wf swap_wf nat_wf swap_order_2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality independent_functionElimination inhabitedIsType universeIsType independent_pairFormation

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (txpose\_perm(i;j)  \mmember{}  Sym(n))



Date html generated: 2019_10_16-PM-00_59_20
Last ObjectModification: 2018_10_08-AM-09_26_39

Theory : perms_1


Home Index