Nuprl Lemma : txpose_perm_wf
∀n:ℕ. ∀i,j:ℕn.  (txpose_perm(i;j) ∈ Sym(n))
Proof
Definitions occuring in Statement : 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
tidentity: Id{T}
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
Lemmas referenced : 
mk_perm_wf_a, 
int_seg_wf, 
swap_wf, 
nat_wf, 
swap_order_2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
inhabitedIsType, 
universeIsType, 
independent_pairFormation
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (txpose\_perm(i;j)  \mmember{}  Sym(n))
Date html generated:
2019_10_16-PM-00_59_20
Last ObjectModification:
2018_10_08-AM-09_26_39
Theory : perms_1
Home
Index