Nuprl Lemma : swap_order_2

n:ℕ. ∀i,j:ℕn.  ((swap(i;j) swap(i;j)) Id ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  swap: swap(i;j) compose: g identity: Id int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: identity: Id compose: g swap: swap(i;j) int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  int_seg_wf nat_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality functionExtensionality sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality promote_hyp instantiate cumulativity independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    ((swap(i;j)  o  swap(i;j))  =  Id)



Date html generated: 2017_10_01-AM-09_52_24
Last ObjectModification: 2017_03_03-PM-00_47_20

Theory : perms_1


Home Index