Nuprl Lemma : swap_wf

n:ℕ. ∀i,j:ℕn.  (swap(i;j) ∈ ℕn ⟶ ℕn)


Proof




Definitions occuring in Statement :  swap: swap(i;j) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T swap: swap(i;j) int_seg: {i..j-} uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat:
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule lambdaEquality_alt sqequalHypSubstitution setElimination thin rename because_Cache hypothesis introduction extract_by_obid isectElimination inhabitedIsType unionElimination equalityElimination productElimination independent_isectElimination hypothesisEquality equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType2 baseApply closedConclusion baseClosed applyEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination equalityIsType1 universeIsType natural_numberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (swap(i;j)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2019_10_16-PM-00_59_09
Last ObjectModification: 2018_10_08-AM-09_28_26

Theory : perms_1


Home Index