Nuprl Lemma : swap_wf
∀n:ℕ. ∀i,j:ℕn.  (swap(i;j) ∈ ℕn ⟶ ℕn)
Proof
Definitions occuring in Statement : 
swap: swap(i;j), 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
swap: swap(i;j), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nat: ℕ
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
equalityIsType1, 
universeIsType, 
natural_numberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (swap(i;j)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)
Date html generated:
2019_10_16-PM-00_59_09
Last ObjectModification:
2018_10_08-AM-09_28_26
Theory : perms_1
Home
Index