Nuprl Lemma : txpose_perm_id

n:ℕ. ∀i,j:ℕn.  ((i j ∈ ℤ (txpose_perm(i;j) id_perm() ∈ Sym(n)))


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) id_perm: id_perm() int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a sym_grp: Sym(n) perm: Perm(T) prop: true: True id_perm: id_perm() txpose_perm: txpose_perm squash: T
Lemmas referenced :  istype-int set_subtype_base lelt_wf int_subtype_base int_seg_wf nat_wf inv_funs_wf perm_f_wf perm_b_wf swap_id mk_perm_wf squash_wf true_wf istype-universe txpose_perm_wf perm_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis equalityIsType4 introduction extract_by_obid sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality sqequalHypSubstitution isectElimination thin intEquality lambdaEquality_alt natural_numberEquality setElimination rename independent_isectElimination inhabitedIsType universeIsType dependent_set_memberEquality_alt because_Cache dependent_functionElimination independent_functionElimination imageElimination equalityTransitivity equalitySymmetry functionIsType universeEquality imageMemberEquality applyLambdaEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    ((i  =  j)  {}\mRightarrow{}  (txpose\_perm(i;j)  =  id\_perm()))



Date html generated: 2019_10_16-PM-00_59_31
Last ObjectModification: 2018_10_08-AM-09_26_32

Theory : perms_1


Home Index