Nuprl Lemma : txpose_perm_id
∀n:ℕ. ∀i,j:ℕn.  ((i = j ∈ ℤ) 
⇒ (txpose_perm(i;j) = id_perm() ∈ Sym(n)))
Proof
Definitions occuring in Statement : 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
id_perm: id_perm()
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
prop: ℙ
, 
true: True
, 
id_perm: id_perm()
, 
txpose_perm: txpose_perm, 
squash: ↓T
Lemmas referenced : 
istype-int, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
int_seg_wf, 
nat_wf, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
swap_id, 
mk_perm_wf, 
squash_wf, 
true_wf, 
istype-universe, 
txpose_perm_wf, 
perm_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
equalityIsType4, 
introduction, 
extract_by_obid, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
inhabitedIsType, 
universeIsType, 
dependent_set_memberEquality_alt, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeEquality, 
imageMemberEquality, 
applyLambdaEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    ((i  =  j)  {}\mRightarrow{}  (txpose\_perm(i;j)  =  id\_perm()))
Date html generated:
2019_10_16-PM-00_59_31
Last ObjectModification:
2018_10_08-AM-09_26_32
Theory : perms_1
Home
Index