Nuprl Lemma : swap_id

n:ℕ. ∀i,j:ℕn.  ((i j ∈ ℤ (swap(i;j) Id ∈ (ℕn ⟶ ℕn)))


Proof




Definitions occuring in Statement :  swap: swap(i;j) identity: Id int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] int_seg: {i..j-} nat: identity: Id swap: swap(i;j) guard: {T} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top ifthenelse: if then else fi  bfalse: ff bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf int_seg_wf nat_wf int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf ifthenelse_wf eq_int_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality setElimination rename hypothesisEquality natural_numberEquality lambdaEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll dependent_set_memberEquality because_Cache hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity baseClosed equalityElimination independent_functionElimination impliesFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    ((i  =  j)  {}\mRightarrow{}  (swap(i;j)  =  Id))



Date html generated: 2017_10_01-AM-09_52_29
Last ObjectModification: 2017_03_03-PM-00_47_18

Theory : perms_1


Home Index