Nuprl Lemma : perm_grp_inv_id

T:Type. (inv_perm(id_perm()) id_perm() ∈ Perm(T))


Proof




Definitions occuring in Statement :  inv_perm: inv_perm(p) id_perm: id_perm() perm: Perm(T) all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| pi1: fst(t) grp_inv: ~ pi2: snd(t) grp_id: e
Lemmas referenced :  grp_inv_id perm_igrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule universeEquality

Latex:
\mforall{}T:Type.  (inv\_perm(id\_perm())  =  id\_perm())



Date html generated: 2016_05_16-AM-07_29_15
Last ObjectModification: 2015_12_28-PM-05_36_43

Theory : perms_1


Home Index