Nuprl Lemma : perm_grp_inv_id
∀T:Type. (inv_perm(id_perm()) = id_perm() ∈ Perm(T))
Proof
Definitions occuring in Statement : 
inv_perm: inv_perm(p), 
id_perm: id_perm(), 
perm: Perm(T), 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
perm_igrp: perm_igrp(T), 
mk_igrp: mk_igrp(T;op;id;inv), 
grp_car: |g|, 
pi1: fst(t), 
grp_inv: ~, 
pi2: snd(t), 
grp_id: e
Lemmas referenced : 
grp_inv_id, 
perm_igrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
universeEquality
Latex:
\mforall{}T:Type.  (inv\_perm(id\_perm())  =  id\_perm())
Date html generated:
2016_05_16-AM-07_29_15
Last ObjectModification:
2015_12_28-PM-05_36_43
Theory : perms_1
Home
Index