Nuprl Lemma : txpose_perm_inv

n:ℕ. ∀i,j:ℕn.  (inv_perm(txpose_perm(i;j)) txpose_perm(i;j) ∈ Sym(n))


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) inv_perm: inv_perm(p) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: txpose_perm: txpose_perm inv_perm: inv_perm(p) mk_perm: mk_perm(f;b) perm_b: p.b pi2: snd(t) perm_f: p.f pi1: fst(t)
Lemmas referenced :  int_seg_wf nat_wf txpose_perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename sqequalRule dependent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (inv\_perm(txpose\_perm(i;j))  =  txpose\_perm(i;j))



Date html generated: 2019_10_16-PM-00_59_23
Last ObjectModification: 2018_10_08-AM-09_26_37

Theory : perms_1


Home Index