Nuprl Lemma : perm_grp_inv_thru_op

[T:Type]. ∀[a,b:Perm(T)].  (inv_perm(a b) inv_perm(b) inv_perm(a) ∈ Perm(T))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm inv_perm: inv_perm(p) perm: Perm(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| pi1: fst(t) grp_inv: ~ pi2: snd(t) grp_op: * infix_ap: y all: x:A. B[x]
Lemmas referenced :  grp_inv_thru_op perm_igrp_wf perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:Perm(T)].    (inv\_perm(a  O  b)  =  inv\_perm(b)  O  inv\_perm(a))



Date html generated: 2016_05_16-AM-07_29_18
Last ObjectModification: 2015_12_28-PM-05_36_40

Theory : perms_1


Home Index