Nuprl Lemma : grp_inv_thru_op

[g:IGroup]. ∀[a,b:|g|].  ((~ (a b)) ((~ b) (~ a)) ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T infix_ap: y igrp: IGroup imon: IMonoid uimplies: supposing a squash: T prop: and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_op_cancel_l grp_op_wf grp_inv_wf grp_car_wf igrp_wf equal_wf squash_wf true_wf grp_inverse infix_ap_wf iff_weakening_equal grp_id_wf mon_assoc grp_inv_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename hypothesis because_Cache independent_isectElimination sqequalRule isect_memberEquality axiomEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b:|g|].    ((\msim{}  (a  *  b))  =  ((\msim{}  b)  *  (\msim{}  a)))



Date html generated: 2017_10_01-AM-08_13_43
Last ObjectModification: 2017_02_28-PM-01_58_09

Theory : groups_1


Home Index