Nuprl Lemma : grp_inv_assoc

[g:IGroup]. ∀[a,b:|g|].  (((a ((~ a) b)) b ∈ |g|) ∧ (((~ a) (a b)) b ∈ |g|))


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q igrp: IGroup imon: IMonoid cand: c∧ B squash: T true: True subtype_rel: A ⊆B infix_ap: y uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf igrp_wf equal_wf mon_assoc grp_inv_wf grp_op_wf grp_inverse mon_ident iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis extract_by_obid isectElimination setElimination rename hypothesisEquality isect_memberEquality because_Cache applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination independent_pairFormation

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b:|g|].    (((a  *  ((\msim{}  a)  *  b))  =  b)  \mwedge{}  (((\msim{}  a)  *  (a  *  b))  =  b))



Date html generated: 2017_10_01-AM-08_13_41
Last ObjectModification: 2017_02_28-PM-01_57_56

Theory : groups_1


Home Index