Nuprl Lemma : grp_inverse

[g:IGroup]. ∀[a:|g|].  (((a (~ a)) e ∈ |g|) ∧ (((~ a) a) e ∈ |g|))


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  inverse: Inverse(T;op;id;inv) uall: [x:A]. B[x] member: t ∈ T igrp: IGroup and: P ∧ Q imon: IMonoid
Lemmas referenced :  igrp_properties grp_car_wf igrp_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename isect_memberEquality productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[g:IGroup].  \mforall{}[a:|g|].    (((a  *  (\msim{}  a))  =  e)  \mwedge{}  (((\msim{}  a)  *  a)  =  e))



Date html generated: 2016_05_15-PM-00_08_02
Last ObjectModification: 2015_12_26-PM-11_46_07

Theory : groups_1


Home Index