Nuprl Lemma : mon_itop_wf
∀[g:IMonoid]. ∀[p,q:ℤ]. ∀[E:{p..q-} ⟶ |g|].  (Π p ≤ i < q. E[i] ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_itop: Π lb ≤ i < ub. E[i]
, 
imon: IMonoid
, 
grp_car: |g|
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
mon_itop: Π lb ≤ i < ub. E[i]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
itop_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
int_seg_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
intEquality
Latex:
\mforall{}[g:IMonoid].  \mforall{}[p,q:\mBbbZ{}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  |g|].    (\mPi{}  p  \mleq{}  i  <  q.  E[i]  \mmember{}  |g|)
Date html generated:
2016_05_15-PM-00_15_47
Last ObjectModification:
2015_12_26-PM-11_40_09
Theory : groups_1
Home
Index