Nuprl Lemma : itop_wf
∀[A:Type]. ∀[op:A ⟶ A ⟶ A]. ∀[id:A]. ∀[p,q:ℤ]. ∀[E:{p..q-} ⟶ A].  (Π(op,id) p ≤ i < q. E[i] ∈ A)
Proof
Definitions occuring in Statement : 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_upper: {i...}
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
int_upper_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_upper_properties, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
equal-wf-base, 
int_subtype_base, 
infix_ap_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
extract_by_obid, 
cumulativity, 
intEquality, 
because_Cache, 
universeEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
addEquality, 
equalityElimination, 
baseClosed, 
functionExtensionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[A:Type].  \mforall{}[op:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[id:A].  \mforall{}[p,q:\mBbbZ{}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  A].    (\mPi{}(op,id)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  A)
Date html generated:
2017_10_01-AM-08_15_30
Last ObjectModification:
2017_02_28-PM-02_00_35
Theory : groups_1
Home
Index