Nuprl Lemma : itop_wf

[A:Type]. ∀[op:A ⟶ A ⟶ A]. ∀[id:A]. ∀[p,q:ℤ]. ∀[E:{p..q-} ⟶ A].  (op,id) p ≤ i < q. E[i] ∈ A)


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_upper: {i...} nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_wf int_upper_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf int_seg_properties decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma int_upper_properties decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf lt_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf equal-wf-base int_subtype_base infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality equalityTransitivity hypothesis equalitySymmetry functionEquality extract_by_obid cumulativity intEquality because_Cache universeEquality lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality addEquality equalityElimination baseClosed functionExtensionality baseApply closedConclusion

Latex:
\mforall{}[A:Type].  \mforall{}[op:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[id:A].  \mforall{}[p,q:\mBbbZ{}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  A].    (\mPi{}(op,id)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  A)



Date html generated: 2017_10_01-AM-08_15_30
Last ObjectModification: 2017_02_28-PM-02_00_35

Theory : groups_1


Home Index