Nuprl Lemma : assert_of_le_int
∀[x,y:ℤ].  uiff(↑x ≤z y;x ≤ y)
Proof
Definitions occuring in Statement : 
le_int: i ≤z j
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
le_int: i ≤z j
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
gt: i > j
, 
guard: {T}
Lemmas referenced : 
less_than'_wf, 
assert_wf, 
bnot_wf, 
lt_int_wf, 
le_wf, 
assert_witness, 
iff_weakening_uiff, 
not_wf, 
assert_of_bnot, 
uiff_wf, 
not-gt-2, 
less_than_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
assert_of_lt_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
because_Cache, 
sqequalRule, 
isect_memberFormation, 
introduction, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
cumulativity, 
lambdaFormation
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}x  \mleq{}z  y;x  \mleq{}  y)
Date html generated:
2016_05_13-PM-03_57_10
Last ObjectModification:
2015_12_26-AM-10_51_53
Theory : bool_1
Home
Index