Nuprl Lemma : assert_functionality_wrt_uiff
∀[u,v:𝔹].  {uiff(↑u;↑v)} supposing u = v
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_witness, 
assert_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
equalitySymmetry, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity
Latex:
\mforall{}[u,v:\mBbbB{}].    \{uiff(\muparrow{}u;\muparrow{}v)\}  supposing  u  =  v
Date html generated:
2016_05_13-PM-03_56_23
Last ObjectModification:
2015_12_26-AM-10_52_19
Theory : bool_1
Home
Index