Nuprl Lemma : mon_itop_txpose_invar

g:IAbMonoid. ∀n:ℕ. ∀E:ℕn ⟶ |g|. ∀x:ℕ+n.  ((Π 0 ≤ j < n. E[txpose_perm(x;0).f j]) (Π 0 ≤ j < n. E[j]) ∈ |g|)


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm perm_f: p.f int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T mon_itop: Π lb ≤ i < ub. E[i] iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] txpose_perm: txpose_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) member: t ∈ T uall: [x:A]. B[x] nat: iabmonoid: IAbMonoid imon: IMonoid tswap: swap{n}(i;j) int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) true: True squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q less_than: a < b infix_ap: y
Lemmas referenced :  int_seg_wf grp_car_wf nat_wf iabmonoid_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma tswap_wf lelt_wf false_wf equal_wf squash_wf true_wf mon_itop_split_el iff_weakening_equal grp_op_wf infix_ap_wf mon_itop_wf itermAdd_wf int_term_value_add_lemma mon_itop_unroll_lo tswap_eval_2 imon_wf tswap_eval_3 tswap_eval_1 mon_assoc abmonoid_ac_1 abmonoid_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality functionEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache applyEquality functionExtensionality dependent_set_memberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_functionElimination addEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}n:\mBbbN{}.  \mforall{}E:\mBbbN{}n  {}\mrightarrow{}  |g|.  \mforall{}x:\mBbbN{}\msupplus{}n.
    ((\mPi{}  0  \mleq{}  j  <  n.  E[txpose\_perm(x;0).f  j])  =  (\mPi{}  0  \mleq{}  j  <  n.  E[j]))



Date html generated: 2017_10_01-AM-09_53_39
Last ObjectModification: 2017_03_03-PM-00_48_37

Theory : perms_1


Home Index