Nuprl Lemma : mon_itop_txpose_invar
∀g:IAbMonoid. ∀n:ℕ. ∀E:ℕn ⟶ |g|. ∀x:ℕ+n.  ((Π 0 ≤ j < n. E[txpose_perm(x;0).f j]) = (Π 0 ≤ j < n. E[j]) ∈ |g|)
Proof
Definitions occuring in Statement : 
txpose_perm: txpose_perm, 
perm_f: p.f
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
txpose_perm: txpose_perm, 
mk_perm: mk_perm(f;b)
, 
perm_f: p.f
, 
pi1: fst(t)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
tswap: swap{n}(i;j)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
infix_ap: x f y
Lemmas referenced : 
int_seg_wf, 
grp_car_wf, 
nat_wf, 
iabmonoid_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
tswap_wf, 
lelt_wf, 
false_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_itop_split_el, 
iff_weakening_equal, 
grp_op_wf, 
infix_ap_wf, 
mon_itop_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
mon_itop_unroll_lo, 
tswap_eval_2, 
imon_wf, 
tswap_eval_3, 
tswap_eval_1, 
mon_assoc, 
abmonoid_ac_1, 
abmonoid_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
functionEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
because_Cache, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
addEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}n:\mBbbN{}.  \mforall{}E:\mBbbN{}n  {}\mrightarrow{}  |g|.  \mforall{}x:\mBbbN{}\msupplus{}n.
    ((\mPi{}  0  \mleq{}  j  <  n.  E[txpose\_perm(x;0).f  j])  =  (\mPi{}  0  \mleq{}  j  <  n.  E[j]))
Date html generated:
2017_10_01-AM-09_53_39
Last ObjectModification:
2017_03_03-PM-00_48_37
Theory : perms_1
Home
Index