Nuprl Lemma : tswap_wf
∀n:ℕ. ∀i,j:ℕn.  (swap{n}(i;j) ∈ ℕn ⟶ ℕn)
Proof
Definitions occuring in Statement : 
tswap: swap{n}(i;j)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
tswap: swap{n}(i;j)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
Lemmas referenced : 
swap_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (swap\{n\}(i;j)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)
Date html generated:
2019_10_16-PM-00_59_11
Last ObjectModification:
2018_10_08-AM-09_46_28
Theory : perms_1
Home
Index