Nuprl Lemma : tswap_wf

n:ℕ. ∀i,j:ℕn.  (swap{n}(i;j) ∈ ℕn ⟶ ℕn)


Proof




Definitions occuring in Statement :  tswap: swap{n}(i;j) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T tswap: swap{n}(i;j) uall: [x:A]. B[x] nat:
Lemmas referenced :  swap_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType universeIsType isectElimination natural_numberEquality setElimination rename

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (swap\{n\}(i;j)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2019_10_16-PM-00_59_11
Last ObjectModification: 2018_10_08-AM-09_46_28

Theory : perms_1


Home Index