Nuprl Lemma : tswap_eval_3

n:ℕ. ∀i,j,k:ℕn.  ((¬(k i ∈ ℕn))  (k j ∈ ℕn))  ((swap{n}(i;j) k) k ∈ ℕn))


Proof




Definitions occuring in Statement :  tswap: swap{n}(i;j) int_seg: {i..j-} nat: all: x:A. B[x] not: ¬A implies:  Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  tswap: swap{n}(i;j) all: x:A. B[x] implies:  Q int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf not_wf equal_wf int_seg_wf nat_wf swap_eval_3 intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut dependent_set_memberEquality hypothesis equalitySymmetry independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality because_Cache

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j,k:\mBbbN{}n.    ((\mneg{}(k  =  i))  {}\mRightarrow{}  (\mneg{}(k  =  j))  {}\mRightarrow{}  ((swap\{n\}(i;j)  k)  =  k))



Date html generated: 2018_05_22-AM-07_44_31
Last ObjectModification: 2018_05_19-AM-08_33_38

Theory : perms_1


Home Index